gydtep 发表于 2021-5-11 19:16:00
随着上百年的发展,电气工程下的可观察性已经不仅仅用来辅助人们进行问题检查和定位问题,我们以汽车工程来看,整个可观察性的发展经历了几个过程:gydtep 发表于 2021-5-12 09:58:44
上面这幅图详细大家非常熟悉,这是Peter Bourgon在参加完2017 Distributed Tracing Summit后发表的一篇博文,简洁扼要地介绍了Metrics、Tracing、Logging三者的定义和关系。这三种数据在可观察性中都有各自的发挥空间,每种数据都没办法完全被其他数据代替。gydtep 发表于 2021-5-12 14:56:35
OpenTelemetry最核心的功能是产生、收集可观察性数据,并支持传输到各种的分析软件中,整体的架构如下图所属,其中Library用于产生统一格式的可观察性数据;Collector用来接收这些数据,并支持把数据传输到各种类型的后端系统。gydtep 发表于 2021-5-12 15:13:23
统一协议:OpenTelemetry为我们带来了Metric、Tracing、Logging(正在制定中,LogModel已经定义完毕)的统一标准,三者都有相同的元数据结构,可以轻松实现互相关联gydtep 发表于 2021-5-12 17:26:37
等级3:根因分析+问题自愈,自动根据异常以及系统的CMDB信息直接定位问题的根因,根因定位准确后那边可以去做问题的自愈。这一阶段相当于是一次质的飞跃,在某些场景下可以在人不用参与的情况下实现问题的自愈。gydtep 发表于 2021-5-13 11:04:25
以公安行业的应用为例,公安行业用户的迫切需求是在海量的视频信息中,发现犯罪嫌疑人的线索。而这个需求的实现,需要智能的前端摄像机,通过实时分析视频内容,检测运动对象,识别人、车等属性信息;然后需要汇总海量的城市级信息到后端人工智能的中心数据库进行存储,再利用强大的计算能力及智能分析能力,对嫌疑人的信息进行实时分析,最终给出最可能的线索建议。gydtep 发表于 2021-5-13 11:27:27
再比如,一个成熟的金融智能化方案,单点的智能化最后必须嵌入到银行的系统中,与其他安防设备一起,如报警主机、门禁、IP对讲等,通过软件平台进行综合管理,才能真正实现智能化系统的价值。gydtep 发表于 2021-5-13 15:14:15
保持适当的平衡-如果您完全致力于边缘AI,那么您将失去持续改进模型的能力。没有新的数据流,您将无处利用。但是,如果您完全致力于云AI,则可能会危及数据质量-由于需要进行权衡才能使其可上传,并且缺乏反馈来指导用户捕获更好的数据-或数据量。gydtep 发表于 2021-5-13 19:21:48
边缘AI芯片组中受支持的神经网络架构的类型是有限的,并且通常比在云中可以实现的功能落后几个月。解决这些局限性的一种有用方法是使用编译器工具链和堆栈,例如Apache TVM,它们有助于将模型从一个平台移植到另一个平台。gydtep 发表于 2021-5-14 10:21:23
第三步:实时数据按实际业务需求使用Flink中进行实时ETL(可选),结果入库MaxCompute交互式分析(Hologres)构建实时数据仓库、应用集市,并提供海量数据的实时交互查询和分析。Hologres提供实时离线联邦查询。