百独托管7500 紫田网络超高转化播放器收cps[推荐]速盾CDN 免实名免备防屏蔽阿里云 爆款特卖9.9元封顶提升alexa、IP流量7Q5团队
【腾讯云】中小企福利专场【腾讯云】多款产品1折起高防 随时退换 好耶数据小飞国外网赚带你月入万元炎黄网络4H4G10M 99每月
香港带宽CN2/美国站群优惠中客数据中心 服务器租用联盟系统移动广告平台 中易企业专场腾讯云服务器2.5折九九数据 工信部正规资质
腾讯云新用户大礼包代金券高价收cpa注册量高价展示【腾讯云】2核2G/9.93起租服务器找45互联 随时退换阿里云 短信服务 验证秒达

引导滤波的软硬件协同加速器设计与实现 [复制链接]
查看:107 | 回复:0

7059

主题

7062

帖子

35

积分

落伍者(一心一意)

Rank: 1

贡献
548
鲜花
0
注册时间
2008-7-23

落伍手机绑定

发表于 2023-12-6 16:02:33 | 显示全部楼层 |阅读模式 来自 中国广西北海
  引导滤波算法被大量用于图像处理领域中,在去雨雪、去雾、前景提取、图像去噪、图像增强、级联采样等方面有很好的处理效果。但是对于实时应用,软件实现难以满足需要。提出了在SDSoC环境下利用软硬件协同开发策略实现引导滤波硬件加速。通过在SDSoC开发环境中调试C语言代码实现引导滤波算法,并将其中影响性能的函数用Xilinx公司开发的Zedboard开发版硬件实现。在设计中,采用了流数据的方法、PS(Processing System)端和PL(Programmable Logic)端协同开发策略,以及软硬件并行、流水线优化等优化方法,提高了加速器的整体性能。实验结果表明,提出的软硬件协同的引导滤波加速器加速比可达16。
  2010年HE K M等人提出了引导滤波(Guided Filter)[1]算法。该算法与双边滤波最大的相似之处就是同样具有保持边缘的特性,不同之处在于它还克服了去伪影的影响。该算法被大量用于图像处理领域中,在去雨雪[2]、去雾[3]、前景提取[4]、图像去噪、图像增强、级联采样等方面有很好的处理效果。
  但是,随着处理图像的尺寸不断扩大,基于CPU处理的引导滤波算法越来越不能满足人们的需求,因此,王新磊等[5]用CUDA实现了引导滤波GPU加速。为使引导滤波能在嵌入式领域达到实时处理,本文提出了基于FPGA对引导滤波实现加速的方法。
  1 引导滤波算法介绍
  引导滤波理论的基础是局部线性模型。该模型认为:任意函数上的任意一点与该点邻近部分的点可以看成是线性关系,一个复杂的函数可以用很多局部线性函数来表示。若需要求出该函数上某一点的值,只需求出所有包含该点的线性函数的值,并求出这些线性函数值的平均值,这个平均值就是该函数上所求点的值。
  2 引导滤波加速器设计
  2.1 实验环境介绍
  本文采用Zynq-7000系列的Zedboard开发板[6]作为硬件开发环境,其PS端提供了ARM Cortex-A9处理器、512 MB DDR3内存空间和外部存储接口。其PL端的XC7Z020 CLG481-1 EEP芯片提供了可编程逻辑阵列单元,为硬件加速提供了丰富的逻辑资源。本文采用SDSoC[7]作为软件开发环境,它是基于Zynq-7000全可编程芯片在嵌入式系统中的IDE(Integrated Development Environment)。
  2.2 算法结构设计
  本文将单通道的图像数据存储在PS端的外部存储中,之后读取数据到内存中。为了获取最大的运算性能,在引导滤波函数调用前分配好算法需要的图像缓冲空间,将内存空间指针以参数形式传递给引导滤波函数,供其使用,之后PS端调用引导滤波函数。本文将引导滤波算法分为两部分,其中一部分是将对算法有较大影响的函数用硬件加速,硬件加速部分将数据传到PL端,PL端将其用硬件逻辑电路实现,对实现的硬件再通过流水线、并行处理和算法重构等优化方法对算法进行优化。处理完数据后,再将数据写回到PS端。最终PS端将处理好的图像存储在外部存储中。

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

论坛客服/商务合作/投诉举报:2171544 (QQ)
落伍者创建于2001/03/14,本站内容均为会员发表,并不代表落伍立场!
拒绝任何人以任何形式在本论坛发表与中华人民共和国法律相抵触的言论!
落伍官方微信:2030286 邮箱:(djfsys@gmail.com|tech@im286.com)
© 2001-2014

浙公网安备 33060302000191号

浙ICP备11034705号 BBS专项电子公告通信管[2010]226号

  落伍法律顾问: ITlaw-庄毅雄

手机版|找回帐号|不能发帖?|Archiver|落伍者

GMT+8, 2025-1-8 12:30 , Processed in 0.051184 second(s), 32 queries , Gzip On.

返回顶部