gydtep
发表于 2021-3-9 12:20:29
统一Agent:使用一个Agent即可完成所有可观察性数据的采集和传输,不需要为每个系统都部署各种各样的Agent,大大降低了系统的资源占用,使整体可观察性系统的架构也变的更加简单
gydtep
发表于 2021-3-9 15:01:34
IT系统的问题非常复杂,尤其涉及到不同的场景和架构,因此我们把算法和经验结合起来进行异常的分析,算法包括基础的统计学、逻辑性算法,也包括AIOp相关的算法,经验中包括人工输入的专家知识、网上上积累的各类问题解决方案以及外部产生的一些事件;最上层我们会提供一些辅助决策的功能,例如告警通知、数据可视化、Webhook等,此外会提供丰富的外部集成能力,例如对接三方的可视化/分析/告警系统,提供OpenAPI以便不同的应用方集成。
gydtep
发表于 2021-3-9 15:03:17
作为CNCF下除了Kubernetes外最活跃的项目,OpenTelemetry受到了各大云厂商以及相关解决方案公司的关注,相信未来一定会成为云原生下可观察性的标准。虽然目前还没有到生产可用的程度,但是目前各个语言的SDK和Collector也基本上稳定,在2021年就能够发布生产可用的版本,值得大家期待。
gydtep
发表于 2021-3-9 15:13:26
而OpenTelemetry只是定义了可观察的前半部分,后面还有非常多的复杂工作需要我们去实现,任重道远。
重点来了!!!!SLS团队长期招聘人才,欢迎对大数据、监控、可观察性、前端可视化、移动端开发、机器学习等有兴趣的同学前来联系我:
gydtep
发表于 2021-3-9 15:32:16
2020年,我国网络基础设施建设已经位居世界前列,信息技术应用持续发展。计算能力、数据资源和核心算法的进步推动人工智能的快速商业化应用。另一方面,多年来的城市智能化治理和建设积累了海量的视频监控数据资源,再加上资本对人工智能算法领域的不断投入,各方面的资源储备为人工智能技术在视频监控行业的大规模商用创造了条件。
gydtep
发表于 2021-3-9 15:46:27
随着人工智能技术深度应用,视频分析技术智能化发展,视频监控已从被动识别过渡到了主动获取、分析、预测的阶段。视频监控与视频分析、深度学习、云计算等领域资源不断整合,摄像头的功能不断深化、使用场景不断丰富,成本、算法、带宽容量不断优化,产业边界不断拓宽。
gydtep
发表于 2021-3-10 07:16:30
边缘AI和云AI相得益彰,并且云资源几乎总是与边缘AI用例有关。在一个完美的世界中,为了简化和扩展,我们将所有工作负载集中在云中,但是,诸如延迟,带宽,自治性,安全性和隐私之类的因素使得必须在靠近数据的边缘部署更多的AI模型。消息来源。一些培训正在边缘进行,并且越来越多地关注联合学习的概念,该概念将处理集中在数据区域,同时集中结果以消除区域偏见。
gydtep
发表于 2021-3-10 09:54:04
一种策略在于创建一种在模型和数据的大小与数据传输成本之间取得平衡的体系结构。对于大型模型,留在云中更有意义。有多种方法可以减小模型大小以帮助解决问题,但是,如果要处理非常大的模型,则可能需要在云中运行它。
gydtep
发表于 2021-3-10 10:07:10
在其他情况下,当在边缘生成大量数据时,在本地更新模型,然后将其子集反馈到云中以进行进一步优化可能更有意义。在对敏感数据进行推理时,开发人员还需要考虑一些隐私问题。例如,如果开发人员希望通过手机摄像头检测中风的证据,则应用程序可能需要在本地处理数据以确保符合HIPAA。
gydtep
发表于 2021-3-10 10:21:55
将更多的AI从云转移到边缘的关键挑战之一是,能够在边缘AI芯片中高效运行的神经网络架构。聪明的行车记录仪供应商。