gydtep 发表于 2021-3-11 09:01:59
产生的数据大致分为两类:一类就是结构化的数据,这里的结构化数据不仅包括了关系型数据库中存储的关系数据,也包括了JSON、XML等之前大家称为半结构化的数据,这样的划分是因为这些数据在今天使用数据库的多模能力进行处理已经非常简单了,不像十年前那么复杂,因此这类的数据统称为结构化数据。另一类是非结构化的数据,包括了如今无处不在的产生日志、文本、图片、语音、视频和文件等,这些都是非结构化数据的代表。gydtep 发表于 2021-3-11 11:16:13
以前大家认为数据仓库扩展性不好,所以出现了大数据技术,但是今天分布式基础设施的能力已经变得非常强了,所以无论是数据库还是数据仓库,其扩展性都变得越来越好,足以处理PB级别的数据。gydtep 发表于 2021-3-11 15:38:49
为此,云原生理念和技术也在发展,帮助用户持续降低潜在风险和系统复杂性。下面我们将介绍在云原生应用交付与运维领域的一些新趋势。gydtep 发表于 2021-3-11 18:50:15
OpenKruise 是阿里云开源的云原生应用自动化管理引擎,也是当前托管在 Cloud Native Computing Foundation (CNCF) 下的 Sandbox 项目。它来自阿里巴巴多年来容器化、云原生的技术沉淀,是阿里内部生产环境大规模应用的基于 Kubernetes 之上的标准扩展组件,一套紧贴上游社区标准、适应互联网规模化场景的技术理念与最佳实践。gydtep 发表于 2021-3-12 13:12:46
FinOps是云财务管理的方式,是企业IT运营模式的转变,目标是提升组织对云成本的理解和更好地做决策。2020年8月,Linux基金会宣布成立FinOps基金会,通过最佳实践、教育和标准推进云财务管学科。目前云厂商开始逐渐加大对FinOps的支持,帮助企业的财务流程可以更好适应云资源的可变性和动态性。比如AWS Cost Explorer, 阿里云费用中心,可以帮助企业更好进行成本分析和分摊。gydtep 发表于 2021-3-12 15:16:08
李世石仅仅是另一个在人机对战中被高度关注的选手。人机对战的历史可以追溯到约翰亨利和新技术蒸汽钻那场史诗般的对战。在那场无限制的比赛中,双方表现得旗鼓相当,最终亨利获胜,但不久就因虚脱而死。随着铁路蜿蜒穿越整个美国,蒸汽钻成了必不可少的工具。深度学习之于李世石如同蒸汽钻之于约翰享利。gydtep 发表于 2021-3-12 19:05:19
其他流行的数据学习技术有决策树( decision tree ) 、随机森林( random forest )和支持向量机(support vector machine )。这些技术虽然强大,但是并不深入。决策树和随机森林工作在原始输入数据上,不进行变换,也不生成新特征;支持向量机层次较浅,因为它们仅由核函数和线性变换组成。类似地单隐藏层神经网络也不被视为深度神经网络,因为它们只包含一个隐藏层。gydtep 发表于 2021-3-13 15:57:31
向量检索的第一大类应用就是对语音、图像、视频这些人类所接触到的,也最为常见的非结构化数据的检索。传统的检索引擎只是对这些多媒体的名称和描述进行了索引,而并没有尝试对这些非结构数据的内容进行理解和建立索引,因此传统引擎的检索结果具有非常大的局限性。gydtep 发表于 2021-3-14 15:06:44
除了监视存储活动外,存储管理员还需要检查和分析存储系统要使用的应用的编码和错误。这有助于他们更好地了解如何围绕应用的需求设计存储体系结构。他们通过了解应用的输入/输出模式来做到这一点。用于执行此操作的最常见技术是捕获应用的跟踪。gydtep 发表于 2021-3-15 10:13:24
Serverless计算具有四个特点:首先,不需要维护云计算基础设施,应用构建的抽象层次上升,变得更加高效;其次,能够实现实时的弹性伸缩,这样能够通过未来的数据驱动的负载感知算法能够实现既满足很低的延时,也能够实现很高的资源利用率;再次,计量模式提供了非常细粒度的按需的模式,可以实现按秒级计量,能够实现完全按需的付费模式,对于用户而言,资源利用率是100%;最后,能够实现高可用,将这种能力内置在平台层。