百独托管7500 紫田网络超高转化播放器收cps[推荐]速盾CDN 免实名免备防屏蔽阿里云 爆款特卖9.9元封顶提升alexa、IP流量7Q5团队
【腾讯云】中小企福利专场【腾讯云】多款产品1折起高防 随时退换 好耶数据小飞国外网赚带你月入万元炎黄网络4H4G10M 99每月
香港带宽CN2/美国站群优惠中客数据中心 服务器租用联盟系统移动广告平台 中易企业专场腾讯云服务器2.5折九九数据 工信部正规资质
腾讯云新用户大礼包代金券高价收cpa注册量高价展示【腾讯云】2核2G/9.93起租服务器找45互联 随时退换阿里云 短信服务 验证秒达

[其它内容] 理解与实现Python中的Black-Litterman模型 [复制链接]
查看:155 | 回复:1

1477

主题

1656

帖子

9

积分

落伍者(一心一意)

Rank: 1

贡献
685
鲜花
0
注册时间
2016-6-22

落伍者落伍微信绑定落伍手机绑定

发表于 2024-5-8 15:15:26 | 显示全部楼层 |阅读模式 来自 中国江苏淮安
华科云商丑图1.jpg
Black-Litterman模型是一种用于重新评估资产组合配置的强大工具,结合了马科维茨均值-方差优化和投资者观点的统计方法。本文将介绍Black-Litterman模型的基本概念、实现步骤以及在Python中的应用示例。

什么是Black-Litterman模型?

Black-Litterman模型是由费雪·布莱克(Fischer Black)和罗伯特·利特曼(Robert Litterman)于1990年提出的一种资产配置模型。该模型旨在解决马科维茨均值-方差优化模型在实际应用中对预期收益率和协方差矩阵估计的敏感性问题。Black-Litterman模型通过结合市场均衡的先验分布和投资者的观点,提供了一种更加稳健和直观的资产配置方法。

Black-Litterman模型实现步骤

1. 确定投资者的观点

首先,投资者需要明确自己的观点,例如对特定资产或资产类别未来收益的预期。这些观点可以是基于市场分析、经济指标或专业投资研究。

2. 构建市场先验

基于市场均衡理论,构建资产的先验收益率和协方差矩阵。这一步通常使用历史数据或其他定量方法得出。

3. 计算均衡预期收益率

利用市场先验和投资者观点,计算资产的均衡预期收益率。Black-Litterman模型通过融合这些信息,修正了资产的预期收益率。

4. 重新优化资产配置

将修正后的预期收益率和协方差矩阵输入到马科维茨均值-方差优化模型中,重新优化资产配置。这一步可以得出更加符合投资者观点和风险偏好的资产组合。

Python中的Black-Litterman模型实现

以下是使用Python中的`pandas`和`numpy`库实现Black-Litterman模型的简化示例:

```python

import pandas as pd

import numpy as np

# 市场资产收益率数据

market_returns = pd.DataFrame({

  'Stock A': [0.05],

  'Stock B': [0.03],

  'Stock C': [0.06]

})

# 投资者观点

views = pd.DataFrame({

  'Asset': ['Stock A', 'Stock B'],

  'View': [0.02, 0.01]

})

# 先验收益率估计

prior_returns = market_returns.mean()

# 先验协方差矩阵估计

cov_matrix = market_returns.cov()

# Black-Litterman模型修正

tau = 0.05  # 调整参数

P = np.eye(len(views), len(prior_returns))  # 识别矩阵

Q = views['View']

Omega = np.diag(views['View'].var())

# 计算均衡预期收益率

posterior_returns = np.linalg.inv(

  np.linalg.inv(tau * cov_matrix) + np.dot(np.dot(P.T, np.linalg.inv(Omega)), P)

).dot(

  np.dot(np.linalg.inv(tau * cov_matrix), prior_returns) + np.dot(np.dot(P.T, np.linalg.inv(Omega)), Q)

)

# 输出修正后的预期收益率

print("修正后的预期收益率:")

print(posterior_returns)

```

通过以上代码,我们演示了如何使用Python中的Black-Litterman模型来修正资产的预期收益率,从而重新评估资产组合的配置。这个例子展示了Black-Litterman模型的核心思想和实际应用,读者可以根据需要进一步扩展和优化该模型。

结语

Black-Litterman模型是投资组合管理中一种有力的工具,能够结合市场先验和投资者观点,为资产配置提供更加准确和稳健的解决方案。通过Python的强大科学计算库,我们可以轻松实现和应用Black-Litterman模型,为投资决策提供更加可靠的支持和指导。
企业专线拨号VPS动态IP派克斯ADSL本地拨号,联系QQ174629754
回复

使用道具 举报

372

主题

1万

帖子

649

积分

落伍者(一心一意)

Rank: 1

贡献
2393
鲜花
0
注册时间
2020-6-17

落伍手机绑定落伍者

发表于 2024-5-13 16:01:31 | 显示全部楼层 来自 中国河南开封
愿收录
[url=http://www.ytllck.com/]超声波流量计[/url]
[url=http://www.ytllck.com/products/]流量计厂家[/url]
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

论坛客服/商务合作/投诉举报:2171544 (QQ)
落伍者创建于2001/03/14,本站内容均为会员发表,并不代表落伍立场!
拒绝任何人以任何形式在本论坛发表与中华人民共和国法律相抵触的言论!
落伍官方微信:2030286 邮箱:(djfsys@gmail.com|tech@im286.com)
© 2001-2014

浙公网安备 33060302000191号

浙ICP备11034705号 BBS专项电子公告通信管[2010]226号

  落伍法律顾问: ITlaw-庄毅雄

手机版|找回帐号|不能发帖?|Archiver|落伍者

GMT+8, 2024-11-25 12:39 , Processed in 0.059574 second(s), 34 queries , Gzip On.

返回顶部