百独托管7500 紫田网络超高转化播放器收cps[推荐]速盾CDN 免实名免备防屏蔽阿里云 爆款特卖9.9元封顶提升alexa、IP流量7Q5团队
【腾讯云】中小企福利专场【腾讯云】多款产品1折起高防 随时退换 好耶数据小飞国外网赚带你月入万元炎黄网络4H4G10M 99每月
香港带宽CN2/美国站群优惠中客数据中心 服务器租用联盟系统移动广告平台 中易企业专场腾讯云服务器2.5折九九数据 工信部正规资质
腾讯云新用户大礼包代金券高价收cpa注册量高价展示【腾讯云】2核2G/9.93起租服务器找45互联 随时退换阿里云 短信服务 验证秒达

知晓:人工智能带给实际的作用 [复制链接]
查看:74 | 回复:0

3869

主题

5726

帖子

1万

积分

落伍者(四季发财)

Rank: 4

贡献
1003
鲜花
0
注册时间
2008-3-10
发表于 2024-7-2 08:29:49 | 显示全部楼层 |阅读模式 来自 中国北京

  很多人认为人工智能和机器人技术是危机,将对我们的隐私,对我们的工作造成威胁和挑战,因为我们很多的工作都将被移交给基于机器的大脑。但是,其实人工智能也正在改善我们的环境,保护人类,人工智能也将解决我们人类自己无法解决的很多艰难的事情。从治愈疾病到处理很多暴力的威胁,AI都将对我们做出很大的贡献。小火箭节点的其他知识和内容也可以到网站具体了解一下,我们是领域内专业的企业平台,欢迎您的关注和了解!


  用人工智能设计新分子

  想设计出一种新型太阳能材料、新型抗癌药、或者能帮助庄稼对抗病毒的新型化合物吗?你首先要解决两项挑战:一是弄清这种物质的化学结构,二是弄清哪些化学反应能把原子连接成所需的分子或分子组合。

  传统方法需进行大量猜测和摸索,极为耗时耗力,往往历经多次失败才能成功。例如,一套合成方案可能要经历成百上千步才能成型,其中很多步都会产生不理想的副反应,或是根本不可行。不过,如今人工智能已经开始提升分子设计和合成双方面的效率,让企业能够更快、更容易、更低成本地进行生产,同时减少化学废料。

  运用人工智能技术,机器学习算法能够对过去所有试图发现或合成新物质的实验进行分析。这些实验有的成功了,但失败的实验其实更重要。根据从中发现的规律,机器学习算法会对可能有用的新分子的结构、以及合成这些分子的方法进行预测。当然,这些可不是按下一个按钮就能做到的事情,但在药物分子和材料的实际设计领域,人工智能技术正处于飞速进步之中。

  例如,德国明斯特大学研发的一款人工智能工具能够重复模拟1240万种已知的单步骤化学反应,最终确定一套多步骤合成方案,且速度足足比人类快30倍。

  而在制药领域,一项以人工智能为基础的、名叫“生成机器学习”的技术也令人倍感激动。大多数制药公司都储存着数百万种化合物,需对它们一一进行筛查,看它们有没有制造新药的潜力。但即使借助机器人和实验室自动化工具,这个筛查过程也十分缓慢,成功率也较低。此外,理论上可能存在的分子达1030种,制药企业拥有的化合物只占其中的一小部分。但利用一个描述已知药物(以及候选药物)的化学结构和性质的数据库,机器学习工具就可以找到拥有类似性质、但用处可能更大的新化合物。这种能力大大加速了新型药物先导化合物的发现。

  将近100家初创公司已经在尝试用人工智能技术进行新药研发了,包括Insilico Medicine、Kebotix和BenevolentAI等公司。其中BenevolentAI最近获得了1.15亿美元的融资,用于借人工智能技术进行运动神经元疾病、帕金森综合征和其它疑难杂症药物的研发。BenevolentAI将人工智能应用到了药物研发的全过程中,从发现新分子到药物设计,再到证明该药物的安全性和有效性的临床测试,都有人工智能的参与。

  在材料领域,Citrine Informatics等公司也运用了和制药公司相似的手段,并通过与巴斯夫、松下这样的大公司合作来加速创新进程。美国政府也对该领域研究表示了支持。自2011年来,美国政府向材料基因组计划的投资已超2.5亿美元。

  过去的经验告诉我们,新材料和新化学物质可能会对健康与安全造成无法预见的风险。幸运的是,人工智能应当能预测到这些风险,从而减少负面结果。这项技术似乎正大大提高新分子和新材料上市的速度和效率,进而改善医疗,帮扶农业,更好地保护资源,并促进可再生能源的生产与存储。

  能够辩论和发指令的人工智能

  如今的数字助手有时会让你怀疑它们就是人类,但更加全能的数字助手也即将问世。在表象之下,Siri、Alexa和其它同类产品借助高级的语音识别软件来了解你的需求,弄清如何满足你的需求,然后用听上去很自然的声音读出与你的问题对应的答案。这类系统首先要接受“训练”,接触大量人类可能给出的要求,然后由人类编写出合适的答案,再将答案编辑成高度结构化的数据形式。

  这项工作非常耗时,训练出的数字助手能够执行的任务也很有限。这些系统也会“学习”,不断加强问题与答案的匹配度,但毕竟程度有限。但尽管如此,它们的能力也堪称惊人。

  目前正在研发的新技术能够让下一代人工智能系统具备吸收和组织非结构化数据(如原始文本、视频、图片、语音、电子邮件等等)的能力,然后针对某个从未接受过训练的话题,自动生成可靠建议、或是给出反对意见。

  有些网站使用的聊天机器人已经展现出了这种能力,在它们受过训练的数据范围之内,可以回答用自然语言提出的问题。这些聊天机器人基本不需要接受针对特定问题或要求的训练,只需借助一系列预先配置好的数据组合、以及即时读取相关背景材料的能力,即可完成相应任务。不过,它们仍需接收一定用词和意图识别方面的训练,才能给出高度准确的回答。

  今年六月,IBM发布了一项更高级的技术:一套未预先接受相关话题训练、就能与人类专家开展实时辩论的系统。该系统需利用非结构化数据(包括维基百科上的内容,其中有些经过了编辑),确定这些信息的相关度和准确度,然后将信息组织成能够重复利用的资源库,从中提取出能够支持己方观点的辩词。它还要对人类对手的辩词做出反应。这套系统在展示中参加了两场辩论。许多观众都认为,它在其中一场辩论中的辩词比人类对手更具说服力。

  这套技术使用的软件不仅能理解自然语言,还能应对判断积极和消极情绪这样的高阶挑战。其研发时间已超五年,且目前仍处于未完成阶段。尽管如此,该系统仍在与人类专家的辩论中占了上风。接下来的三至五年间,想必会出现无数与之相关的应用。这些系统将发挥重要作用,如帮助医生迅速找到与某个复杂病例相关的研究资料,然后据此分析某套治疗方案的优势。

  这类智能系统只能汇编已有知识,无法像科学家或专家那样创造新的知识。但随着机器变得越来越智能,人类失业的可能性也越来越大。因此社会需要为下一代人工智能提供必要的技能,让他们解决需要人类智力才能解决的问题。

  对抗癌症和视力丧失

  全球每年有大约880万人死于癌症,并且有近1400万人被诊断患有某种形式的癌症。尽早发现癌症,可以大大的提高患者的生存机会,并且降低疾病复发的概率。AI技术可以通过图片扫描技术来帮助医生识别疾病,这套技术可以96%的准确识别患者的肿瘤和癌症,包括诊断乳腺癌,肺癌,直肠癌,子宫肌瘤,卵巢癌,胃癌,和前列腺癌症等等。还可以帮助视力下降的患者提前预防早期迹象,提前接受治疗,杜绝视力丧失。

  保护环境

  气候变化,环境污染是人类最大的挑战。通过云计算,大数据,AI技术,我们可以通过机器学习算法来实时监控能源的生产和需求,通过蓄电池,把能量储存起来,循环利用,在人们需要的时候释放出来,这样可以消除不可再生能源对我们环境造成的冲击。还可以通过AI技术实时调节我们对能源的需求,比如说冰箱可以通过AI技术远程控制,因此只有在电网需求低的时候才能进入冷却循环。

  打开APP阅读更多精彩内容
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

论坛客服/商务合作/投诉举报:2171544 (QQ)
落伍者创建于2001/03/14,本站内容均为会员发表,并不代表落伍立场!
拒绝任何人以任何形式在本论坛发表与中华人民共和国法律相抵触的言论!
落伍官方微信:2030286 邮箱:(djfsys@gmail.com|tech@im286.com)
© 2001-2014

浙公网安备 33060302000191号

浙ICP备11034705号 BBS专项电子公告通信管[2010]226号

  落伍法律顾问: ITlaw-庄毅雄

手机版|找回帐号|不能发帖?|Archiver|落伍者

GMT+8, 2024-11-15 07:43 , Processed in 0.055661 second(s), 30 queries , Gzip On.

返回顶部