gydtep 发表于 2021-6-1 18:33:25
在这个流程中,还没有涉及到对于流量精细粒度控制的高级灰度方案,但已经足够体现出其复杂性和操作难度了。如果仅仅依赖于简单的发布脚本进行管理,不但效率很低,还很容易导致顾此失彼,对系统稳定性造成巨大的风险。gydtep 发表于 2021-6-2 17:22:26
如果应用需要从 4 个实例扩容到 6 个实例,或者缩容到 2 个实例,只需要一个指令就可以完成,甚至与 SLB 的绑定关系,都可以自动的建立或解除,这是 Serverless 技术为开发者带来的巨大价值。gydtep 发表于 2021-6-3 17:14:12
开箱即用的注册中心:SAE 自带商业版 Nacos 注册中心,可以免费使用,不需要自行搭建。如果有特殊的需求,比如让部署在 SAE 的应用和其他应用相互发现,也可以使用微服务引擎(MSE)产品提供的注册中心,或者自建的注册中心。gydtep 发表于 2021-6-4 14:31:51
在权责方面,面向业务提供服务之前,由统一的团队负责从业务中抽象出源于业务而又不同于业务的数据域,再主导统一建设数据中间层,包括侧重明细数据预JOIN等处理的明细中间层、侧重面向应用可复用维度和指标的汇总数据中间层。gydtep 发表于 2021-6-7 15:06:17
比如,业务流量应该多大,DB节点应该设置多少个,业务流量和DB的设计是否符合要求。比如,同步的关键业务对应的流量链路和异步化任务可能运行在同一个节点中,那么如何实现二者流量隔离就是一个难题。gydtep 发表于 2021-6-8 15:54:47
蚂蚁通常按照特性将数据分为状态型数据和流水型数据。所谓流水型数据,即每出现一条数据都将其存入数据库中。比如,订单数据就是一种流水型数据,每出现一条新订单都被存入数据库。流水型数据的大部分业务类型是将数据插入到数据库。另一种数据是状态型数据,通常可以被修改,并且具有生命周期特征,比如会员信息。gydtep 发表于 2021-6-10 15:43:55
它们都提供了对底层计算、存储、网络、异构计算设备的资源抽象和安全访问模型。可以根据应用需求进行资源调度和编排。Linux 的计算调度单元是进程,调度范围限制在一台计算节点。而 Kubernetes 的调度单位是 Pod,可以在分布式集群中进行资源调度,甚至跨越不同的云环境。gydtep 发表于 2021-6-12 13:30:10
成本管理: 对于“Pay as you go”的收费模式的一个弱点是无法准确预测具体会产生多少费用,这于许多组织预算管理的方式不同。gydtep 发表于 2021-6-15 09:20:54
不管是SDK方式还是探针方式,非手工埋点形式的链路信息采集都依赖于链路追踪组件对于底层框架的识别。这些底层框架包含的领域非常广,其中包含应用对外提供服务所需要的框架,应用进程内部的通讯框架,应用之间相互访问所需要的框架,应用访问外部系统所需要的框架等等。gydtep 发表于 2021-6-16 08:45:44
第一部分阐述了一些学习的原则。任何时候,遵循一些经过检验的原则,都是影响效率的重要因素,正确的方法是成功的秘诀。