gydtep 发表于 2021-2-28 07:26:44
随着互联网进入下半场,流量红利逐渐消失,一方面,企业开始重视如何通过数据来挖掘同一个用户的更多价值;另一方面,不管是产品经理、运营还是市场都开始通过“数据驱动”寻找新的增长空间。gydtep 发表于 2021-2-28 08:40:03
对于数据驱动,很多人做到一定程度之后,脑海中会形成一定的方法论和体系,进而形成驱动流程和组织机制。大家也听了很多方法论,包括增长黑客等,貌似自己已经很懂数据驱动了,但是实际操作起来可能连“什么是事件属性这种基础的概念都不了解”,这是很多业务线同学普遍的现状。gydtep 发表于 2021-2-28 09:04:40
另外,很多公司认为做数据驱动就应该有一个高大上的数据平台,这两年标签画像平台或者数据中台的概念比较火,它们真的能够实现数据驱动吗?不见得。目前,很多公司的数据质量非常差,数据驱动就更无从谈起,这是国内大中小企业普遍存在的情况。gydtep 发表于 2021-2-28 09:44:00
早些时候,大家对“数据驱动”的理解是“报表驱动”。2016年、2017年的时候,一家处于C轮、D轮的深圳公司,该公司有1000多份报表,每张有10个Sheet,每个表格有20多个指标,大家可以算下一共有多少个指标,他们内部的数据团队都不知道哪些指标有用、哪些没有用。为了督促大家去看这些报表,公司还监控了邮箱。gydtep 发表于 2021-2-28 18:19:09
人脸识别最初在20世纪60年代已经有研究人员开始研究,真正进入初级的应用阶段是在90年代后期,发展至今其技术成熟度已经达到较高的程度。gydtep 发表于 2021-2-28 18:38:03
1991年,特征脸(Eigenface)算法被应用在人脸识别,首次实现了自动检测人脸。这项技术是霍普金斯大学的希洛维奇(Sirovich)提出,再由麻省理工学院(MIT)"连接科学"的创始主任亚力克斯彭特兰(Alex Pentland)发扬光大,彭特兰在2012年被《福布斯》评为"全球7个最强数据科学家之一",获此殊荣的还有谷歌创始人拉里佩奇。gydtep 发表于 2021-2-28 19:23:42
与其他生物识别方式相比,人脸识别优势在于自然性、不被察觉性等特点。自然性即该识别方式同人类进行个体识别时所利用的生物特征相同。指纹识别、虹膜识别等均不具有自然性。不被察觉的特点使该识别方法不易使人抵触,而指纹识别或虹膜识别需利用电子压力传感器或红外线采集指纹、虹膜图像,在采集过程中体验感不佳。gydtep 发表于 2021-2-28 19:46:35
目前人脸识别需要解决的难题是在不同场景、脸部遮挡等应用时如何保证识别率。此外,隐私性和安全性也是值得考虑的问题。人脸识别优势明显,未来将成为识别主导技术。gydtep 发表于 2021-2-28 20:11:28
具体来说,相比指纹识别、虹膜识别等传统的生物识别方式,优点主要还集中在四点:非接触性、非侵扰性、硬件基础完善和采集快捷便利,可拓展性好。在复杂环境下,人脸识别精度问题得到解决后,预计人脸识别有望快速替代指纹识别成为市场大规模应用的主流识别技术。gydtep 发表于 2021-3-1 10:04:19
维护工作复杂:除了客户端的SDK和探针外,一套全链路监控方案在服务端有计算组件、存储组件、展示组件,都需要单独进行维护。以Jaeger为例,仅在数据存储方面需要维护一套独立的Elasticsearch集群,需要投入很大的工作量。